Skip to content

lfp_band.py

LFPBandSelection

Bases: SpyglassMixin, Manual

The user's selection of LFP data to be filtered in a given frequency band.

Source code in src/spyglass/lfp/analysis/v1/lfp_band.py
@schema
class LFPBandSelection(SpyglassMixin, dj.Manual):
    """The user's selection of LFP data to be filtered in a given frequency band."""

    definition = """
    -> LFPOutput.proj(lfp_merge_id='merge_id')                            # the LFP data to be filtered
    -> FirFilterParameters                                                # the filter to use for the data
    -> IntervalList.proj(target_interval_list_name='interval_list_name')  # the original set of times to be filtered
    lfp_band_sampling_rate: int                                           # the sampling rate for this band
    ---
    min_interval_len = 1.0: float  # the minimum length of a valid interval to filter
    """

    class LFPBandElectrode(SpyglassMixin, dj.Part):
        definition = """
        -> LFPBandSelection # the LFP band selection
        -> LFPElectrodeGroup.LFPElectrode  # the LFP electrode to be filtered
        reference_elect_id = -1: int  # the reference electrode to use; -1 for no reference
        ---
        """

    def set_lfp_band_electrodes(
        self,
        nwb_file_name: str,
        lfp_merge_id: int,
        electrode_list: list[int],
        filter_name: str,
        interval_list_name: str,
        reference_electrode_list: list[int],
        lfp_band_sampling_rate: int,
    ):
        """Sets the electrodes to be filtered for a given LFP

        Parameters
        ----------
        nwb_file_name: str
            The name of the NWB file containing the LFP data
        lfp_merge_id: int
            The uuid of the LFP data to be filtered
        electrode_list: list
            A list of the electrodes to be filtered
        filter_name: str
            The name of the filter to be used
        interval_list_name: str
            The name of the interval list to be used
        reference_electrode_list: list
            A list of the reference electrodes to be used
        lfp_band_sampling_rate: int
        """
        # Error checks on parameters
        # electrode_list

        lfp_key = {"merge_id": lfp_merge_id}
        lfp_part_table = LFPOutput.merge_get_part(lfp_key)

        query = LFPElectrodeGroup().LFPElectrode() & lfp_key
        available_electrodes = query.fetch("electrode_id")
        if not np.all(np.isin(electrode_list, available_electrodes)):
            raise ValueError(
                "All elements in electrode_list must be valid electrode_ids in the LFPElectodeGroup table"
            )
        # sampling rate
        lfp_sampling_rate = LFPOutput.merge_get_parent(lfp_key).fetch1(
            "lfp_sampling_rate"
        )
        decimation = lfp_sampling_rate // lfp_band_sampling_rate
        if lfp_sampling_rate // decimation != lfp_band_sampling_rate:
            raise ValueError(
                f"lfp_band_sampling rate {lfp_band_sampling_rate} is not an integer divisor of lfp "
                f"samping rate {lfp_sampling_rate}"
            )
        # filter
        filter_query = FirFilterParameters() & {
            "filter_name": filter_name,
            "filter_sampling_rate": lfp_sampling_rate,
        }
        if not filter_query:
            raise ValueError(
                f"filter {filter_name}, sampling rate {lfp_sampling_rate} is not in the FirFilterParameters table"
            )
        # interval_list
        interval_query = IntervalList() & {
            "nwb_file_name": nwb_file_name,
            "interval_name": interval_list_name,
        }
        if not interval_query:
            raise ValueError(
                f"interval list {interval_list_name} is not in the IntervalList table; the list must be "
                "added before this function is called"
            )
        # reference_electrode_list
        if len(reference_electrode_list) != 1 and len(
            reference_electrode_list
        ) != len(electrode_list):
            raise ValueError(
                "reference_electrode_list must contain either 1 or len(electrode_list) elements"
            )
        # add a -1 element to the list to allow for the no reference option
        available_electrodes = np.append(available_electrodes, [-1])
        if not np.all(np.isin(reference_electrode_list, available_electrodes)):
            raise ValueError(
                "All elements in reference_electrode_list must be valid electrode_ids in the LFPSelection "
                "table"
            )

        # make a list of all the references
        ref_list = np.zeros((len(electrode_list),))
        ref_list[:] = reference_electrode_list

        key = dict(
            nwb_file_name=nwb_file_name,
            lfp_merge_id=lfp_merge_id,
            filter_name=filter_name,
            filter_sampling_rate=lfp_sampling_rate,
            target_interval_list_name=interval_list_name,
            lfp_band_sampling_rate=lfp_sampling_rate // decimation,
        )
        # insert an entry into the main LFPBandSelectionTable
        self.insert1(key, skip_duplicates=True)

        key["lfp_electrode_group_name"] = lfp_part_table.fetch1(
            "lfp_electrode_group_name"
        )
        # iterate through all of the new elements and add them
        for e, r in zip(electrode_list, ref_list):
            elect_key = (
                LFPElectrodeGroup.LFPElectrode
                & {
                    "nwb_file_name": nwb_file_name,
                    "lfp_electrode_group_name": key["lfp_electrode_group_name"],
                    "electrode_id": e,
                }
            ).fetch1("KEY")
            for item in elect_key:
                key[item] = elect_key[item]
            query = Electrode & {
                "nwb_file_name": nwb_file_name,
                "electrode_id": e,
            }
            key["reference_elect_id"] = r
            self.LFPBandElectrode().insert1(key, skip_duplicates=True)

set_lfp_band_electrodes(nwb_file_name, lfp_merge_id, electrode_list, filter_name, interval_list_name, reference_electrode_list, lfp_band_sampling_rate)

Sets the electrodes to be filtered for a given LFP

Parameters:

Name Type Description Default
nwb_file_name str

The name of the NWB file containing the LFP data

required
lfp_merge_id int

The uuid of the LFP data to be filtered

required
electrode_list list[int]

A list of the electrodes to be filtered

required
filter_name str

The name of the filter to be used

required
interval_list_name str

The name of the interval list to be used

required
reference_electrode_list list[int]

A list of the reference electrodes to be used

required
lfp_band_sampling_rate int
required
Source code in src/spyglass/lfp/analysis/v1/lfp_band.py
def set_lfp_band_electrodes(
    self,
    nwb_file_name: str,
    lfp_merge_id: int,
    electrode_list: list[int],
    filter_name: str,
    interval_list_name: str,
    reference_electrode_list: list[int],
    lfp_band_sampling_rate: int,
):
    """Sets the electrodes to be filtered for a given LFP

    Parameters
    ----------
    nwb_file_name: str
        The name of the NWB file containing the LFP data
    lfp_merge_id: int
        The uuid of the LFP data to be filtered
    electrode_list: list
        A list of the electrodes to be filtered
    filter_name: str
        The name of the filter to be used
    interval_list_name: str
        The name of the interval list to be used
    reference_electrode_list: list
        A list of the reference electrodes to be used
    lfp_band_sampling_rate: int
    """
    # Error checks on parameters
    # electrode_list

    lfp_key = {"merge_id": lfp_merge_id}
    lfp_part_table = LFPOutput.merge_get_part(lfp_key)

    query = LFPElectrodeGroup().LFPElectrode() & lfp_key
    available_electrodes = query.fetch("electrode_id")
    if not np.all(np.isin(electrode_list, available_electrodes)):
        raise ValueError(
            "All elements in electrode_list must be valid electrode_ids in the LFPElectodeGroup table"
        )
    # sampling rate
    lfp_sampling_rate = LFPOutput.merge_get_parent(lfp_key).fetch1(
        "lfp_sampling_rate"
    )
    decimation = lfp_sampling_rate // lfp_band_sampling_rate
    if lfp_sampling_rate // decimation != lfp_band_sampling_rate:
        raise ValueError(
            f"lfp_band_sampling rate {lfp_band_sampling_rate} is not an integer divisor of lfp "
            f"samping rate {lfp_sampling_rate}"
        )
    # filter
    filter_query = FirFilterParameters() & {
        "filter_name": filter_name,
        "filter_sampling_rate": lfp_sampling_rate,
    }
    if not filter_query:
        raise ValueError(
            f"filter {filter_name}, sampling rate {lfp_sampling_rate} is not in the FirFilterParameters table"
        )
    # interval_list
    interval_query = IntervalList() & {
        "nwb_file_name": nwb_file_name,
        "interval_name": interval_list_name,
    }
    if not interval_query:
        raise ValueError(
            f"interval list {interval_list_name} is not in the IntervalList table; the list must be "
            "added before this function is called"
        )
    # reference_electrode_list
    if len(reference_electrode_list) != 1 and len(
        reference_electrode_list
    ) != len(electrode_list):
        raise ValueError(
            "reference_electrode_list must contain either 1 or len(electrode_list) elements"
        )
    # add a -1 element to the list to allow for the no reference option
    available_electrodes = np.append(available_electrodes, [-1])
    if not np.all(np.isin(reference_electrode_list, available_electrodes)):
        raise ValueError(
            "All elements in reference_electrode_list must be valid electrode_ids in the LFPSelection "
            "table"
        )

    # make a list of all the references
    ref_list = np.zeros((len(electrode_list),))
    ref_list[:] = reference_electrode_list

    key = dict(
        nwb_file_name=nwb_file_name,
        lfp_merge_id=lfp_merge_id,
        filter_name=filter_name,
        filter_sampling_rate=lfp_sampling_rate,
        target_interval_list_name=interval_list_name,
        lfp_band_sampling_rate=lfp_sampling_rate // decimation,
    )
    # insert an entry into the main LFPBandSelectionTable
    self.insert1(key, skip_duplicates=True)

    key["lfp_electrode_group_name"] = lfp_part_table.fetch1(
        "lfp_electrode_group_name"
    )
    # iterate through all of the new elements and add them
    for e, r in zip(electrode_list, ref_list):
        elect_key = (
            LFPElectrodeGroup.LFPElectrode
            & {
                "nwb_file_name": nwb_file_name,
                "lfp_electrode_group_name": key["lfp_electrode_group_name"],
                "electrode_id": e,
            }
        ).fetch1("KEY")
        for item in elect_key:
            key[item] = elect_key[item]
        query = Electrode & {
            "nwb_file_name": nwb_file_name,
            "electrode_id": e,
        }
        key["reference_elect_id"] = r
        self.LFPBandElectrode().insert1(key, skip_duplicates=True)

LFPBandV1

Bases: SpyglassMixin, Computed

Source code in src/spyglass/lfp/analysis/v1/lfp_band.py
@schema
class LFPBandV1(SpyglassMixin, dj.Computed):
    definition = """
    -> LFPBandSelection              # the LFP band selection
    ---
    -> AnalysisNwbfile               # the name of the nwb file with the lfp data
    -> IntervalList                  # the final interval list of valid times for the data
    lfp_band_object_id: varchar(40)  # the NWB object ID for loading this object from the file
    """

    def make(self, key):
        # get the NWB object with the lfp data; FIX: change to fetch with additional infrastructure
        lfp_key = {"merge_id": key["lfp_merge_id"]}
        lfp_object = LFPOutput.fetch_nwb(lfp_key)[0]["lfp"]

        # get the electrodes to be filtered and their references
        lfp_band_elect_id, lfp_band_ref_id = (
            LFPBandSelection().LFPBandElectrode() & key
        ).fetch("electrode_id", "reference_elect_id")

        # sort the electrodes to make sure they are in ascending order
        lfp_band_elect_id = np.asarray(lfp_band_elect_id)
        lfp_band_ref_id = np.asarray(lfp_band_ref_id)
        lfp_sort_order = np.argsort(lfp_band_elect_id)
        lfp_band_elect_id = lfp_band_elect_id[lfp_sort_order]
        lfp_band_ref_id = lfp_band_ref_id[lfp_sort_order]

        lfp_sampling_rate, lfp_interval_list = LFPOutput.merge_get_parent(
            lfp_key
        ).fetch1("lfp_sampling_rate", "interval_list_name")
        interval_list_name, lfp_band_sampling_rate = (
            LFPBandSelection() & key
        ).fetch1("target_interval_list_name", "lfp_band_sampling_rate")
        valid_times = (
            IntervalList()
            & {
                "nwb_file_name": key["nwb_file_name"],
                "interval_list_name": interval_list_name,
            }
        ).fetch1("valid_times")
        # the valid_times for this interval may be slightly beyond the valid times for the lfp itself,
        # so we have to intersect the two lists
        lfp_valid_times = (
            IntervalList()
            & {
                "nwb_file_name": key["nwb_file_name"],
                "interval_list_name": lfp_interval_list,
            }
        ).fetch1("valid_times")
        min_length = (LFPBandSelection & key).fetch1("min_interval_len")
        lfp_band_valid_times = interval_list_intersect(
            valid_times, lfp_valid_times, min_length=min_length
        )

        filter_name, filter_sampling_rate, lfp_band_sampling_rate = (
            LFPBandSelection() & key
        ).fetch1(
            "filter_name", "filter_sampling_rate", "lfp_band_sampling_rate"
        )

        decimation = int(lfp_sampling_rate) // lfp_band_sampling_rate

        # load in the timestamps
        timestamps = np.asarray(lfp_object.timestamps)
        # get the indices of the first timestamp and the last timestamp that are within the valid times
        included_indices = interval_list_contains_ind(
            lfp_band_valid_times, timestamps
        )
        # pad the indices by 1 on each side to avoid message in filter_data
        if included_indices[0] > 0:
            included_indices[0] -= 1
        if included_indices[-1] != len(timestamps) - 1:
            included_indices[-1] += 1

        timestamps = timestamps[included_indices[0] : included_indices[-1]]

        # load all the data to speed filtering
        lfp_data = np.asarray(
            lfp_object.data[included_indices[0] : included_indices[-1], :],
            dtype=type(lfp_object.data[0][0]),
        )

        # get the indices of the electrodes to be filtered and the references
        lfp_band_elect_index = get_electrode_indices(
            lfp_object, lfp_band_elect_id
        )
        lfp_band_ref_index = get_electrode_indices(lfp_object, lfp_band_ref_id)

        # subtract off the references for the selected channels
        lfp_data_original = lfp_data.copy()
        for index, elect_index in enumerate(lfp_band_elect_index):
            if lfp_band_ref_id[index] != -1:
                lfp_data[:, elect_index] = (
                    lfp_data_original[:, elect_index]
                    - lfp_data_original[:, lfp_band_ref_index[index]]
                )

        # get the LFP filter that matches the raw data
        filter = (
            FirFilterParameters()
            & {"filter_name": filter_name}
            & {"filter_sampling_rate": filter_sampling_rate}
        ).fetch(as_dict=True)
        if len(filter) == 0:
            raise ValueError(
                f"Filter {filter_name} and sampling_rate {lfp_band_sampling_rate} does not exit in the "
                "FirFilterParameters table"
            )

        filter_coeff = filter[0]["filter_coeff"]
        if len(filter_coeff) == 0:
            logger.error(
                "LFPBand: no filter found with data "
                + f"sampling rate of {lfp_band_sampling_rate}"
            )
            return None

        # create the analysis nwb file to store the results.
        lfp_band_file_name = AnalysisNwbfile().create(key["nwb_file_name"])
        lfp_band_file_abspath = AnalysisNwbfile().get_abs_path(
            lfp_band_file_name
        )
        # filter the data and write to an the nwb file
        filtered_data, new_timestamps = FirFilterParameters().filter_data(
            timestamps,
            lfp_data,
            filter_coeff,
            lfp_band_valid_times,
            lfp_band_elect_index,
            decimation,
        )

        # now that the LFP is filtered, we create an electrical series for it and add it to the file
        with pynwb.NWBHDF5IO(
            path=lfp_band_file_abspath, mode="a", load_namespaces=True
        ) as io:
            nwbf = io.read()
            # get the indices of the electrodes in the electrode table of the file to get the right values
            elect_index = get_electrode_indices(nwbf, lfp_band_elect_id)
            electrode_table_region = nwbf.create_electrode_table_region(
                elect_index, "filtered electrode table"
            )
            eseries_name = "filtered data"
            # TODO: use datatype of data
            es = pynwb.ecephys.ElectricalSeries(
                name=eseries_name,
                data=filtered_data,
                electrodes=electrode_table_region,
                timestamps=new_timestamps,
            )
            lfp = pynwb.ecephys.LFP(electrical_series=es)
            ecephys_module = nwbf.create_processing_module(
                name="ecephys",
                description=f"LFP data processed with {filter_name}",
            )
            ecephys_module.add(lfp)
            io.write(nwbf)
            lfp_band_object_id = es.object_id
        #
        # add the file to the AnalysisNwbfile table
        AnalysisNwbfile().add(key["nwb_file_name"], lfp_band_file_name)
        key["analysis_file_name"] = lfp_band_file_name
        key["lfp_band_object_id"] = lfp_band_object_id

        # finally, we need to censor the valid times to account for the downsampling if this is the first time we've
        # downsampled these data
        key["interval_list_name"] = (
            interval_list_name
            + " lfp band "
            + str(lfp_band_sampling_rate)
            + "Hz"
        )
        tmp_valid_times = (
            IntervalList
            & {
                "nwb_file_name": key["nwb_file_name"],
                "interval_list_name": key["interval_list_name"],
            }
        ).fetch("valid_times")
        if len(tmp_valid_times) == 0:
            lfp_band_valid_times = interval_list_censor(
                lfp_band_valid_times, new_timestamps
            )
            # add an interval list for the LFP valid times
            IntervalList.insert1(
                {
                    "nwb_file_name": key["nwb_file_name"],
                    "interval_list_name": key["interval_list_name"],
                    "valid_times": lfp_band_valid_times,
                    "pipeline": "lfp band",
                }
            )
        else:
            lfp_band_valid_times = interval_list_censor(
                lfp_band_valid_times, new_timestamps
            )
            # check that the valid times are the same
            assert np.isclose(
                tmp_valid_times[0], lfp_band_valid_times
            ).all(), (
                "previously saved lfp band times do not match current times"
            )

        self.insert1(key)

    def fetch1_dataframe(self, *attrs, **kwargs):
        """Fetches the filtered data as a dataframe"""
        filtered_nwb = self.fetch_nwb()[0]
        return pd.DataFrame(
            filtered_nwb["lfp_band"].data,
            index=pd.Index(filtered_nwb["lfp_band"].timestamps, name="time"),
        )

    def compute_analytic_signal(self, electrode_list: list[int], **kwargs):
        """Computes the hilbert transform of a given LFPBand signal using scipy.signal.hilbert

        Parameters
        ----------
        electrode_list: list[int]
            A list of the electrodes to compute the hilbert transform of

        Returns
        -------
        analytic_signal_df: pd.DataFrame
            DataFrame containing hilbert transform of signal

        Raises
        ------
        ValueError
            If any electrodes passed to electrode_list are invalid for the dataset
        """

        filtered_band = self.fetch_nwb()[0]["lfp_band"]
        electrode_index = np.isin(
            filtered_band.electrodes.data[:], electrode_list
        )
        if len(electrode_list) != np.sum(electrode_index):
            raise ValueError(
                "Some of the electrodes specified in electrode_list are missing in the current LFPBand table."
            )
        analytic_signal_df = pd.DataFrame(
            hilbert(filtered_band.data[:, electrode_index], axis=0),
            index=pd.Index(filtered_band.timestamps, name="time"),
            columns=[f"electrode {e}" for e in electrode_list],
        )
        return analytic_signal_df

    def compute_signal_phase(
        self, electrode_list: list[int] = None, **kwargs
    ) -> pd.DataFrame:
        """Computes the phase of a given LFPBand signals using the hilbert transform

        Parameters
        ----------
        electrode_list : list[int], optional
            A list of the electrodes to compute the phase of, by default None

        Returns
        -------
        signal_phase_df : pd.DataFrame
            DataFrame containing the phase of the signals
        """
        if electrode_list is None:
            electrode_list = []

        analytic_signal_df = self.compute_analytic_signal(
            electrode_list, **kwargs
        )

        return pd.DataFrame(
            np.angle(analytic_signal_df) + np.pi,
            columns=analytic_signal_df.columns,
            index=analytic_signal_df.index,
        )

    def compute_signal_power(
        self, electrode_list: list[int] = None, **kwargs
    ) -> pd.DataFrame:
        """Computes the power of a given LFPBand signals using the hilbert transform

        Parameters
        ----------
        electrode_list : list[int], optional
            A list of the electrodes to compute the power of, by default None

        Returns
        -------
        signal_power_df : pd.DataFrame
            DataFrame containing the power of the signals
        """
        if electrode_list is None:
            electrode_list = []

        analytic_signal_df = self.compute_analytic_signal(
            electrode_list, **kwargs
        )

        return pd.DataFrame(
            np.abs(analytic_signal_df) ** 2,
            columns=analytic_signal_df.columns,
            index=analytic_signal_df.index,
        )

fetch1_dataframe(*attrs, **kwargs)

Fetches the filtered data as a dataframe

Source code in src/spyglass/lfp/analysis/v1/lfp_band.py
def fetch1_dataframe(self, *attrs, **kwargs):
    """Fetches the filtered data as a dataframe"""
    filtered_nwb = self.fetch_nwb()[0]
    return pd.DataFrame(
        filtered_nwb["lfp_band"].data,
        index=pd.Index(filtered_nwb["lfp_band"].timestamps, name="time"),
    )

compute_analytic_signal(electrode_list, **kwargs)

Computes the hilbert transform of a given LFPBand signal using scipy.signal.hilbert

Parameters:

Name Type Description Default
electrode_list list[int]

A list of the electrodes to compute the hilbert transform of

required

Returns:

Name Type Description
analytic_signal_df DataFrame

DataFrame containing hilbert transform of signal

Raises:

Type Description
ValueError

If any electrodes passed to electrode_list are invalid for the dataset

Source code in src/spyglass/lfp/analysis/v1/lfp_band.py
def compute_analytic_signal(self, electrode_list: list[int], **kwargs):
    """Computes the hilbert transform of a given LFPBand signal using scipy.signal.hilbert

    Parameters
    ----------
    electrode_list: list[int]
        A list of the electrodes to compute the hilbert transform of

    Returns
    -------
    analytic_signal_df: pd.DataFrame
        DataFrame containing hilbert transform of signal

    Raises
    ------
    ValueError
        If any electrodes passed to electrode_list are invalid for the dataset
    """

    filtered_band = self.fetch_nwb()[0]["lfp_band"]
    electrode_index = np.isin(
        filtered_band.electrodes.data[:], electrode_list
    )
    if len(electrode_list) != np.sum(electrode_index):
        raise ValueError(
            "Some of the electrodes specified in electrode_list are missing in the current LFPBand table."
        )
    analytic_signal_df = pd.DataFrame(
        hilbert(filtered_band.data[:, electrode_index], axis=0),
        index=pd.Index(filtered_band.timestamps, name="time"),
        columns=[f"electrode {e}" for e in electrode_list],
    )
    return analytic_signal_df

compute_signal_phase(electrode_list=None, **kwargs)

Computes the phase of a given LFPBand signals using the hilbert transform

Parameters:

Name Type Description Default
electrode_list list[int]

A list of the electrodes to compute the phase of, by default None

None

Returns:

Name Type Description
signal_phase_df DataFrame

DataFrame containing the phase of the signals

Source code in src/spyglass/lfp/analysis/v1/lfp_band.py
def compute_signal_phase(
    self, electrode_list: list[int] = None, **kwargs
) -> pd.DataFrame:
    """Computes the phase of a given LFPBand signals using the hilbert transform

    Parameters
    ----------
    electrode_list : list[int], optional
        A list of the electrodes to compute the phase of, by default None

    Returns
    -------
    signal_phase_df : pd.DataFrame
        DataFrame containing the phase of the signals
    """
    if electrode_list is None:
        electrode_list = []

    analytic_signal_df = self.compute_analytic_signal(
        electrode_list, **kwargs
    )

    return pd.DataFrame(
        np.angle(analytic_signal_df) + np.pi,
        columns=analytic_signal_df.columns,
        index=analytic_signal_df.index,
    )

compute_signal_power(electrode_list=None, **kwargs)

Computes the power of a given LFPBand signals using the hilbert transform

Parameters:

Name Type Description Default
electrode_list list[int]

A list of the electrodes to compute the power of, by default None

None

Returns:

Name Type Description
signal_power_df DataFrame

DataFrame containing the power of the signals

Source code in src/spyglass/lfp/analysis/v1/lfp_band.py
def compute_signal_power(
    self, electrode_list: list[int] = None, **kwargs
) -> pd.DataFrame:
    """Computes the power of a given LFPBand signals using the hilbert transform

    Parameters
    ----------
    electrode_list : list[int], optional
        A list of the electrodes to compute the power of, by default None

    Returns
    -------
    signal_power_df : pd.DataFrame
        DataFrame containing the power of the signals
    """
    if electrode_list is None:
        electrode_list = []

    analytic_signal_df = self.compute_analytic_signal(
        electrode_list, **kwargs
    )

    return pd.DataFrame(
        np.abs(analytic_signal_df) ** 2,
        columns=analytic_signal_df.columns,
        index=analytic_signal_df.index,
    )