Extracting Waveforms
Developer Note: if you may make a PR in the future, be sure to copy this
notebook, and use the gitignore
prefix temp
to avoid future conflicts.
This is one notebook in a multi-part series on clusterless decoding in Spyglass
- To set up your Spyglass environment and database, see the Setup notebook
- For additional info on DataJoint syntax, including table definitions and inserts, see the Insert Data notebook
- Prior to running, please familiarize yourself with the spike sorting pipeline and generate input position data with either the Trodes or DLC notebooks (1, 2, 3).
The goal of this notebook is to populate the UnitWaveformFeatures
table, which depends SpikeSortingOutput
. This table contains the features of the waveforms of each unit.
While clusterless decoding avoids actual spike sorting, we need to pass through these tables to maintain (relative) pipeline simplicity. Pass-through tables keep spike sorting and clusterless waveform extraction as similar as possible, by using shared steps. Here, "spike sorting" involves simple thresholding (sorter: clusterless_thresholder).
from pathlib import Path
import datajoint as dj
dj.config.load(
Path("../dj_local_conf.json").absolute()
) # load config for database connection info
First, if you haven't inserted the the mediumnwb20230802.wnb
file into the database, you should do so now. This is the file that we will use for the decoding tutorials.
It is a truncated version of the full NWB file, so it will run faster, but bigger than the minirec file we used in the previous tutorials so that decoding makes sense.
from spyglass.utils.nwb_helper_fn import get_nwb_copy_filename
import spyglass.data_import as sgi
import spyglass.position as sgp
# Insert the nwb file
nwb_file_name = "mediumnwb20230802.nwb"
nwb_copy_file_name = get_nwb_copy_filename(nwb_file_name)
sgi.insert_sessions(nwb_file_name)
# Position
sgp.v1.TrodesPosParams.insert_default()
interval_list_name = "pos 0 valid times"
trodes_s_key = {
"nwb_file_name": nwb_copy_file_name,
"interval_list_name": interval_list_name,
"trodes_pos_params_name": "default",
}
sgp.v1.TrodesPosSelection.insert1(
trodes_s_key,
skip_duplicates=True,
)
sgp.v1.TrodesPosV1.populate(trodes_s_key)
[2024-04-19 10:37:45,302][INFO]: Connecting sambray@lmf-db.cin.ucsf.edu:3306 [2024-04-19 10:37:45,330][INFO]: Connected sambray@lmf-db.cin.ucsf.edu:3306 /home/sambray/Documents/spyglass/src/spyglass/data_import/insert_sessions.py:58: UserWarning: Cannot insert data from mediumnwb20230802.nwb: mediumnwb20230802_.nwb is already in Nwbfile table. warnings.warn(
These next steps are the same as in the Spike Sorting notebook, but we'll repeat them here for clarity. These are pre-processing steps that are shared between spike sorting and clusterless decoding.
We first set the SortGroup
to define which contacts are sorted together.
We then setup for spike sorting by bandpass filtering and whitening the data via the SpikeSortingRecording
table.
import spyglass.spikesorting.v1 as sgs
sgs.SortGroup.set_group_by_shank(nwb_file_name=nwb_copy_file_name)
sort_group_ids = (sgs.SortGroup & {"nwb_file_name": nwb_copy_file_name}).fetch(
"sort_group_id"
)
group_keys = []
for sort_group_id in sort_group_ids:
key = {
"nwb_file_name": nwb_copy_file_name,
"sort_group_id": sort_group_id,
"interval_list_name": interval_list_name,
"preproc_param_name": "default",
"team_name": "Alison Comrie",
}
group_keys.append(key)
sgs.SpikeSortingRecordingSelection.insert_selection(key)
sgs.SpikeSortingRecording.populate(group_keys)
[10:37:53][WARNING] Spyglass: Similar row(s) already inserted. [10:37:53][WARNING] Spyglass: Similar row(s) already inserted. [10:37:53][WARNING] Spyglass: Similar row(s) already inserted. [10:37:53][WARNING] Spyglass: Similar row(s) already inserted. [10:37:53][WARNING] Spyglass: Similar row(s) already inserted. [10:37:53][WARNING] Spyglass: Similar row(s) already inserted. [10:37:53][WARNING] Spyglass: Similar row(s) already inserted. [10:37:53][WARNING] Spyglass: Similar row(s) already inserted. [10:37:53][WARNING] Spyglass: Similar row(s) already inserted. [10:37:53][WARNING] Spyglass: Similar row(s) already inserted. [10:37:53][WARNING] Spyglass: Similar row(s) already inserted. [10:37:53][WARNING] Spyglass: Similar row(s) already inserted. [10:37:53][WARNING] Spyglass: Similar row(s) already inserted. [10:37:53][WARNING] Spyglass: Similar row(s) already inserted. [10:37:53][WARNING] Spyglass: Similar row(s) already inserted. [10:37:53][WARNING] Spyglass: Similar row(s) already inserted. [10:37:53][WARNING] Spyglass: Similar row(s) already inserted. [10:37:53][WARNING] Spyglass: Similar row(s) already inserted. [10:37:53][WARNING] Spyglass: Similar row(s) already inserted. [10:37:53][WARNING] Spyglass: Similar row(s) already inserted. [10:37:53][WARNING] Spyglass: Similar row(s) already inserted. [10:37:53][WARNING] Spyglass: Similar row(s) already inserted. [10:37:53][WARNING] Spyglass: Similar row(s) already inserted. [10:37:53][WARNING] Spyglass: Similar row(s) already inserted.
Next we do artifact detection. Here we skip it by setting the artifact_param_name
to None
, but in practice you should detect artifacts as it will affect the decoding.
recording_ids = (
sgs.SpikeSortingRecordingSelection & {"nwb_file_name": nwb_copy_file_name}
).fetch("recording_id")
group_keys = []
for recording_id in recording_ids:
key = {
"recording_id": recording_id,
"artifact_param_name": "none",
}
group_keys.append(key)
sgs.ArtifactDetectionSelection.insert_selection(key)
sgs.ArtifactDetection.populate(group_keys)
[10:37:56][WARNING] Spyglass: Similar row(s) already inserted.
[10:37:56][WARNING] Spyglass: Similar row(s) already inserted. [10:37:56][WARNING] Spyglass: Similar row(s) already inserted. [10:37:56][WARNING] Spyglass: Similar row(s) already inserted. [10:37:56][WARNING] Spyglass: Similar row(s) already inserted. [10:37:56][WARNING] Spyglass: Similar row(s) already inserted. [10:37:56][WARNING] Spyglass: Similar row(s) already inserted. [10:37:56][WARNING] Spyglass: Similar row(s) already inserted. [10:37:56][WARNING] Spyglass: Similar row(s) already inserted. [10:37:56][WARNING] Spyglass: Similar row(s) already inserted. [10:37:56][WARNING] Spyglass: Similar row(s) already inserted. [10:37:56][WARNING] Spyglass: Similar row(s) already inserted. [10:37:56][WARNING] Spyglass: Similar row(s) already inserted. [10:37:56][WARNING] Spyglass: Similar row(s) already inserted. [10:37:56][WARNING] Spyglass: Similar row(s) already inserted. [10:37:56][WARNING] Spyglass: Similar row(s) already inserted. [10:37:56][WARNING] Spyglass: Similar row(s) already inserted. [10:37:56][WARNING] Spyglass: Similar row(s) already inserted. [10:37:56][WARNING] Spyglass: Similar row(s) already inserted. [10:37:56][WARNING] Spyglass: Similar row(s) already inserted. [10:37:56][WARNING] Spyglass: Similar row(s) already inserted. [10:37:56][WARNING] Spyglass: Similar row(s) already inserted. [10:37:56][WARNING] Spyglass: Similar row(s) already inserted. [10:37:56][WARNING] Spyglass: Similar row(s) already inserted. [10:37:56][WARNING] Spyglass: Similar row(s) already inserted. [10:37:56][WARNING] Spyglass: Similar row(s) already inserted. [10:37:56][WARNING] Spyglass: Similar row(s) already inserted.
Now we run the "spike sorting", which in our case is simply thresholding the signal to find spikes. We use the SpikeSorting
table to store the results. Note that sorter_param_name
defines the parameters for thresholding the signal.
(sgs.SpikeSorterParameters() & {"sorter": "clusterless_thresholder"}).fetch1()
{'sorter': 'clusterless_thresholder', 'sorter_param_name': 'default_clusterless', 'sorter_params': {'detect_threshold': 100.0, 'method': 'locally_exclusive', 'peak_sign': 'neg', 'exclude_sweep_ms': 0.1, 'local_radius_um': 100, 'noise_levels': array([1.]), 'random_chunk_kwargs': {}, 'outputs': 'sorting'}}
group_keys = []
for recording_id in recording_ids:
key = {
"recording_id": recording_id,
"sorter": "clusterless_thresholder",
"sorter_param_name": "default_clusterless",
"nwb_file_name": nwb_copy_file_name,
"interval_list_name": str(
(
sgs.ArtifactDetectionSelection
& {"recording_id": recording_id, "artifact_param_name": "none"}
).fetch1("artifact_id")
),
}
group_keys.append(key)
sgs.SpikeSortingSelection.insert_selection(key)
sort_keys = (sgs.SpikeSortingSelection & group_keys).fetch("KEY")
sgs.SpikeSorting.populate(sort_keys)
[12:03:38][INFO] Spyglass: Similar row(s) already inserted. [12:03:38][INFO] Spyglass: Similar row(s) already inserted.
[12:03:38][INFO] Spyglass: Similar row(s) already inserted. [12:03:38][INFO] Spyglass: Similar row(s) already inserted. [12:03:38][INFO] Spyglass: Similar row(s) already inserted. [12:03:38][INFO] Spyglass: Similar row(s) already inserted. [12:03:38][INFO] Spyglass: Similar row(s) already inserted. [12:03:38][INFO] Spyglass: Similar row(s) already inserted. [12:03:38][INFO] Spyglass: Similar row(s) already inserted. [12:03:38][INFO] Spyglass: Similar row(s) already inserted. [12:03:39][INFO] Spyglass: Similar row(s) already inserted. [12:03:39][INFO] Spyglass: Similar row(s) already inserted. [12:03:39][INFO] Spyglass: Similar row(s) already inserted. [12:03:39][INFO] Spyglass: Similar row(s) already inserted. [12:03:39][INFO] Spyglass: Similar row(s) already inserted. [12:03:39][INFO] Spyglass: Similar row(s) already inserted. [12:03:39][INFO] Spyglass: Similar row(s) already inserted. [12:03:39][INFO] Spyglass: Similar row(s) already inserted. [12:03:39][INFO] Spyglass: Similar row(s) already inserted. [12:03:39][INFO] Spyglass: Similar row(s) already inserted. [12:03:39][INFO] Spyglass: Similar row(s) already inserted. [12:03:39][INFO] Spyglass: Similar row(s) already inserted. [12:03:39][INFO] Spyglass: Similar row(s) already inserted. [12:03:39][INFO] Spyglass: Similar row(s) already inserted. [12:03:39][INFO] Spyglass: Similar row(s) already inserted. [12:03:39][INFO] Spyglass: Similar row(s) already inserted. [12:03:39][INFO] Spyglass: Similar row(s) already inserted.
For clusterless decoding we do not need any manual curation, but for the sake of the pipeline, we need to store the output of the thresholding in the CurationV1
table and insert this into the SpikeSortingOutput
table.
sgs.SpikeSorting().populate(
sgs.SpikeSortingSelection
& {
"nwb_file_name": nwb_copy_file_name,
"sorter": "clusterless_thresholder",
"sorter_param_name": "default_clusterless",
}
)
detect peaks using locally_exclusive: 0%| | 0/1476 [00:00<?, ?it/s]
/home/sambray/mambaforge-pypy3/envs/spyglass/lib/python3.9/site-packages/pynwb/ecephys.py:90: UserWarning: ElectricalSeries 'e-series': The second dimension of data does not match the length of electrodes. Your data may be transposed. warnings.warn("%s '%s': The second dimension of data does not match the length of electrodes. " /home/sambray/mambaforge-pypy3/envs/spyglass/lib/python3.9/site-packages/pynwb/base.py:193: UserWarning: TimeSeries 'analog': Length of data does not match length of timestamps. Your data may be transposed. Time should be on the 0th dimension warn("%s '%s': Length of data does not match length of timestamps. Your data may be transposed. " [12:10:21][INFO] Spyglass: Writing new NWB file mediumnwb20230802_UB40ETS0L4.nwb /home/sambray/mambaforge-pypy3/envs/spyglass/lib/python3.9/site-packages/hdmf/build/objectmapper.py:668: MissingRequiredBuildWarning: NWBFile 'root' is missing required value for attribute 'source_script_file_name'. warnings.warn(msg, MissingRequiredBuildWarning)
from spyglass.spikesorting.spikesorting_merge import SpikeSortingOutput
sorting_ids = (
sgs.SpikeSortingSelection
& {
"nwb_file_name": nwb_copy_file_name,
"sorter": "clusterless_thresholder",
"sorter_param_name": "default_clusterless",
}
).fetch("sorting_id")
for sorting_id in sorting_ids:
try:
sgs.CurationV1.insert_curation(sorting_id=sorting_id)
except KeyError:
pass
SpikeSortingOutput.insert(
sgs.CurationV1().fetch("KEY"),
part_name="CurationV1",
skip_duplicates=True,
)
Finally, we extract the waveform features of each SortGroup. This is done by the UnitWaveformFeatures
table.
To set this up, we use the WaveformFeaturesParams
to define the time around the spike that we want to use for feature extraction, and which features to extract. Here is an example of the parameters used for extraction the amplitude of the negative peak of the waveform:
waveform_extraction_params = {
"ms_before": 0.5,
"ms_after": 0.5,
"max_spikes_per_unit": None,
"n_jobs": 5,
"total_memory": "5G",
}
waveform_feature_params = {
"amplitude": {
"peak_sign": "neg",
"estimate_peak_time": False,
}
}
We see that we want 0.5 ms of time before and after the peak of the negative spike. We also see that we want to extract the amplitude of the negative peak, and that we do not want to estimate the peak time (since we know it is at 0 ms).
You can define other features to extract such as spatial location of the spike:
waveform_extraction_params = {
"ms_before": 0.5,
"ms_after": 0.5,
"max_spikes_per_unit": None,
"n_jobs": 5,
"total_memory": "5G",
}
waveform_feature_params = {
"amplitude": {
"peak_sign": "neg",
"estimate_peak_time": False,
},
"spike location": {}
}
Note: Members of the Frank Lab can use "ampl_10_jobs_v2" instead of "amplitude" for significant speed improvements.
from spyglass.decoding.v1.waveform_features import WaveformFeaturesParams
waveform_extraction_params = {
"ms_before": 0.5,
"ms_after": 0.5,
"max_spikes_per_unit": None,
"n_jobs": 5,
"total_memory": "5G",
}
waveform_feature_params = {
"amplitude": {
"peak_sign": "neg",
"estimate_peak_time": False,
}
}
WaveformFeaturesParams.insert1(
{
"features_param_name": "amplitude",
"params": {
"waveform_extraction_params": waveform_extraction_params,
"waveform_feature_params": waveform_feature_params,
},
},
skip_duplicates=True,
)
WaveformFeaturesParams()
/home/sambray/mambaforge-pypy3/envs/spyglass/lib/python3.9/site-packages/non_local_detector/likelihoods/clusterless_kde.py:4: TqdmExperimentalWarning: Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console) from tqdm.autonotebook import tqdm [2024-04-19 12:40:14,102][INFO]: Connecting sambray@lmf-db.cin.ucsf.edu:3306 [2024-04-19 12:40:14,138][INFO]: Connected sambray@lmf-db.cin.ucsf.edu:3306
features_param_name a name for this set of parameters | params the parameters for the waveform features |
---|---|
amplitude | =BLOB= |
amplitude, spike_location | =BLOB= |
Total: 2
Now that we've inserted the waveform features parameters, we need to define which parameters to use for each SortGroup. This is done by the UnitWaveformFeaturesSelection
table. We need to link the primary key merge_id
from the SpikeSortingOutput
table to a features parameter set.
from spyglass.decoding.v1.waveform_features import UnitWaveformFeaturesSelection
UnitWaveformFeaturesSelection()
spikesorting_merge_id | features_param_name a name for this set of parameters |
---|---|
003bf29a-fa09-05be-5cac-b7ea70a48c0c | amplitude |
004faf9a-72cb-4416-ae13-3f85d538604f | amplitude |
0061a9df-3954-99d4-d738-fd13ab7119fe | amplitude |
00775472-67a6-5836-b68a-d15186ae3b3c | amplitude |
00a1861f-bbf0-5e78-3dc6-36551b2657b0 | amplitude |
00a9f0d0-b682-2b12-6a2b-08e4129291ce | amplitude |
00bd2bbf-ccdb-7be3-f1a0-5e337d87a5a4 | amplitude |
00bdda4f-7059-6c72-c571-a80ad323fda2 | amplitude |
00db0baa-4ec0-3d20-897a-ea4a067ebbba | amplitude |
00e5a16b-c4f2-e8dc-3083-17f542dadc36 | amplitude |
00f25c1b-d5a3-6ca6-c501-ef0e544f6284 | amplitude |
012fdb25-bd7e-aedd-c41b-bb7e177ceeb8 | amplitude |
...
Total: 3504
First we find the units we need. We can use the method SpikeSortingOutput.get_restricted_merge_ids()
to perform the needed joins to find them:
nwb_copy_file_name = "mediumnwb20230802_.nwb"
from spyglass.spikesorting.spikesorting_merge import SpikeSortingOutput
key = {
"nwb_file_name": nwb_copy_file_name,
"sorter": "clusterless_thresholder",
"sorter_param_name": "default_clusterless",
}
merge_ids = SpikeSortingOutput().get_restricted_merge_ids(
{
"nwb_file_name": nwb_copy_file_name,
"sorter": "clusterless_thresholder",
"sorter_param_name": "default_clusterless",
},
sources=["v1"],
)
Then we link them with the features parameters:
selection_keys = [
{
"spikesorting_merge_id": merge_id,
"features_param_name": "amplitude",
}
for merge_id in merge_ids
]
UnitWaveformFeaturesSelection.insert(selection_keys, skip_duplicates=True)
UnitWaveformFeaturesSelection & selection_keys
spikesorting_merge_id | features_param_name a name for this set of parameters |
---|---|
0233e49a-b849-7eab-7434-9c298eea87b8 | amplitude |
07239cea-7578-5409-692c-18c9d26b4d36 | amplitude |
08be9775-370d-6492-0b4e-a5db4ce7a128 | amplitude |
11819f33-11d5-f0f8-2590-ce3d60b76f3a | amplitude |
1c2ea289-2e7f-dcda-0464-ce97d3d6a392 | amplitude |
20f24092-d191-0c58-55c8-d43d453f9fd4 | amplitude |
2598b48e-49a0-3389-dd15-0230e8d326e4 | amplitude |
483055a5-9775-27b7-856e-01543bd920aa | amplitude |
50ae3f7e-65a8-5fc2-5304-ab534b90fa46 | amplitude |
50b29d01-2d74-e37e-2842-ad56d833c5f9 | amplitude |
5e756e76-68be-21b7-7764-cb78d9aa4ef8 | amplitude |
67f156e1-5da7-9c89-03b1-cc2dba88dacd | amplitude |
...
Total: 26
Finally, we extract the waveform features, by populating the UnitWaveformFeatures
table:
from spyglass.decoding.v1.waveform_features import UnitWaveformFeatures
UnitWaveformFeatures.populate(selection_keys)
UnitWaveformFeatures & selection_keys
spikesorting_merge_id | features_param_name a name for this set of parameters | analysis_file_name name of the file | object_id the NWB object that stores the waveforms |
---|---|---|---|
0751a1e1-a406-7f87-ae6f-ce4ffc60621c | amplitude | mediumnwb20230802_NQEPSMKPK0.nwb | 8607d6a6-213c-431d-ab99-70196b6cf0bf |
485a4ddf-332d-35b5-3ad4-0561736c1844 | amplitude | mediumnwb20230802_F02UG5Z5FR.nwb | 9f693a74-a203-4628-b3ec-50a32b3549d8 |
4a712103-c223-864f-82e0-6c23de79cc14 | amplitude | mediumnwb20230802_OTV91MLKDT.nwb | 648953e8-1891-4c90-9756-d6b7cc2b7c3d |
4a72c253-b3ca-8c13-e615-736a7ebff35c | amplitude | mediumnwb20230802_TSPNTCGNN1.nwb | 6d0af664-f811-4781-9a23-cac437fb2d15 |
5c53bd33-d57c-fbba-e0fb-55e0bcb85d03 | amplitude | mediumnwb20230802_QSK70WFDJH.nwb | a67ed5bb-3edd-465e-8737-ee08f3e7d7d5 |
614d796c-0b95-6364-aaa0-b6cb1e7bbb83 | amplitude | mediumnwb20230802_DO45HKXYTB.nwb | 13218b00-bf34-455c-9c38-c3b3174d4009 |
6acb99b8-6a0c-eb83-1141-5f603c5895e0 | amplitude | mediumnwb20230802_KFIYRJ4HFO.nwb | d892bb47-94fc-4c29-acab-d5b3d9565c97 |
6d039a63-17ad-0b78-4b1e-f02d5f3dbbc5 | amplitude | mediumnwb20230802_0YIM5K3H47.nwb | 60f4d280-a42a-4a77-9c35-9bd4d2c76991 |
74e10781-1228-4075-0870-af224024ffdc | amplitude | mediumnwb20230802_CTLEGE2TWZ.nwb | 99f51e3d-54b5-41d7-a61e-7013b22fb066 |
7e3fa66e-727e-1541-819a-b01309bb30ae | amplitude | mediumnwb20230802_7EN0N1U4U1.nwb | 535b28d1-c9b5-4d7d-a4f5-4d80508542b4 |
86897349-ff68-ac72-02eb-739dd88936e6 | amplitude | mediumnwb20230802_DHKWBWWAMC.nwb | 67ee1547-c570-4746-b886-748d96075b54 |
8bbddc0f-d6ae-6260-9400-f884a6e25ae8 | amplitude | mediumnwb20230802_PEN0D79Q0B.nwb | 5dd7b87f-4cf0-4a91-a281-15c6f6c86d61 |
...
Total: 23
Now that we've extracted the data, we can inspect the results. Let's fetch the data:
spike_times, spike_waveform_features = (
UnitWaveformFeatures & selection_keys
).fetch_data()
[2024-01-17 22:19:07,354][WARNING]: Skipped checksum for file with hash: a7c9b1d9-d1a2-7f40-9127-206e83a87006, and path: /Users/edeno/Documents/GitHub/spyglass/DATA/analysis/mediumnwb20230802/mediumnwb20230802_NQEPSMKPK0.nwb [2024-01-17 22:19:07,359][WARNING]: Skipped checksum for file with hash: ec7faa5b-3847-6649-1a93-74ebd50dcfb9, and path: /Users/edeno/Documents/GitHub/spyglass/DATA/analysis/mediumnwb20230802/mediumnwb20230802_F02UG5Z5FR.nwb [2024-01-17 22:19:07,369][WARNING]: Skipped checksum for file with hash: 8e964932-96ab-e1c9-2133-edce8eacab5f, and path: /Users/edeno/Documents/GitHub/spyglass/DATA/analysis/mediumnwb20230802/mediumnwb20230802_OTV91MLKDT.nwb [2024-01-17 22:19:07,379][WARNING]: Skipped checksum for file with hash: 895bac7b-bfd6-b4f2-b2ad-460362aaafa8, and path: /Users/edeno/Documents/GitHub/spyglass/DATA/analysis/mediumnwb20230802/mediumnwb20230802_TSPNTCGNN1.nwb [2024-01-17 22:19:07,382][WARNING]: Skipped checksum for file with hash: 58713583-cf49-4527-7707-105f9c9ee477, and path: /Users/edeno/Documents/GitHub/spyglass/DATA/analysis/mediumnwb20230802/mediumnwb20230802_QSK70WFDJH.nwb [2024-01-17 22:19:07,385][WARNING]: Skipped checksum for file with hash: a64829f8-ab12-fecc-eda9-a22b90b20d43, and path: /Users/edeno/Documents/GitHub/spyglass/DATA/analysis/mediumnwb20230802/mediumnwb20230802_DO45HKXYTB.nwb [2024-01-17 22:19:07,391][WARNING]: Skipped checksum for file with hash: 3a580271-9126-8e57-048e-a7bbb3f917b9, and path: /Users/edeno/Documents/GitHub/spyglass/DATA/analysis/mediumnwb20230802/mediumnwb20230802_KFIYRJ4HFO.nwb [2024-01-17 22:19:07,395][WARNING]: Skipped checksum for file with hash: 13cf8ad9-023c-c9b7-05c3-eaa3330304f2, and path: /Users/edeno/Documents/GitHub/spyglass/DATA/analysis/mediumnwb20230802/mediumnwb20230802_0YIM5K3H47.nwb [2024-01-17 22:19:07,397][WARNING]: Skipped checksum for file with hash: 7ce8a640-0a25-4866-6d5a-aa2c65f0aca5, and path: /Users/edeno/Documents/GitHub/spyglass/DATA/analysis/mediumnwb20230802/mediumnwb20230802_CTLEGE2TWZ.nwb [2024-01-17 22:19:07,399][WARNING]: Skipped checksum for file with hash: aa657f4f-f409-d444-8b32-31d37abe0797, and path: /Users/edeno/Documents/GitHub/spyglass/DATA/analysis/mediumnwb20230802/mediumnwb20230802_7EN0N1U4U1.nwb [2024-01-17 22:19:07,401][WARNING]: Skipped checksum for file with hash: f3b4bd22-1439-e6d2-4e15-aa3650143fdf, and path: /Users/edeno/Documents/GitHub/spyglass/DATA/analysis/mediumnwb20230802/mediumnwb20230802_DHKWBWWAMC.nwb [2024-01-17 22:19:07,404][WARNING]: Skipped checksum for file with hash: 68eac0b2-e5be-e0c5-9eae-cd8dbe6676a8, and path: /Users/edeno/Documents/GitHub/spyglass/DATA/analysis/mediumnwb20230802/mediumnwb20230802_PEN0D79Q0B.nwb [2024-01-17 22:19:07,407][WARNING]: Skipped checksum for file with hash: c8b95099-2cb3-df0b-5ab1-7a5e120a8e2f, and path: /Users/edeno/Documents/GitHub/spyglass/DATA/analysis/mediumnwb20230802/mediumnwb20230802_WP7SIXDJ2A.nwb [2024-01-17 22:19:07,409][WARNING]: Skipped checksum for file with hash: 8fae8089-f683-5f0a-4e59-c71d6ee14f38, and path: /Users/edeno/Documents/GitHub/spyglass/DATA/analysis/mediumnwb20230802/mediumnwb20230802_B82OS6W1QA.nwb [2024-01-17 22:19:07,412][WARNING]: Skipped checksum for file with hash: dd9d0f51-6445-b368-32bd-b1f142bf6ed3, and path: /Users/edeno/Documents/GitHub/spyglass/DATA/analysis/mediumnwb20230802/mediumnwb20230802_XO17FQLN6T.nwb [2024-01-17 22:19:07,414][WARNING]: Skipped checksum for file with hash: 4e2cf5f5-ff7c-1a2b-db85-2d1c4f036fbd, and path: /Users/edeno/Documents/GitHub/spyglass/DATA/analysis/mediumnwb20230802/mediumnwb20230802_OCFI0GFLZ9.nwb [2024-01-17 22:19:07,416][WARNING]: Skipped checksum for file with hash: 8691c252-0bd1-122b-8cf3-b89c4d0fdee0, and path: /Users/edeno/Documents/GitHub/spyglass/DATA/analysis/mediumnwb20230802/mediumnwb20230802_60M9VSZX0W.nwb [2024-01-17 22:19:07,419][WARNING]: Skipped checksum for file with hash: 57b89835-8edb-e91d-0798-09d22fb4fbc9, and path: /Users/edeno/Documents/GitHub/spyglass/DATA/analysis/mediumnwb20230802/mediumnwb20230802_Z5HJ68LHYW.nwb [2024-01-17 22:19:07,422][WARNING]: Skipped checksum for file with hash: 54401121-4426-86c9-72f7-e056bc16e99d, and path: /Users/edeno/Documents/GitHub/spyglass/DATA/analysis/mediumnwb20230802/mediumnwb20230802_U5U5JVGY4F.nwb [2024-01-17 22:19:07,424][WARNING]: Skipped checksum for file with hash: 0ff21e84-2214-6911-2575-a9c92a541407, and path: /Users/edeno/Documents/GitHub/spyglass/DATA/analysis/mediumnwb20230802/mediumnwb20230802_0D5Z0NSIP8.nwb [2024-01-17 22:19:07,426][WARNING]: Skipped checksum for file with hash: 0949b006-5309-93c8-fd8b-1308e8130869, and path: /Users/edeno/Documents/GitHub/spyglass/DATA/analysis/mediumnwb20230802/mediumnwb20230802_EYV2NARUKU.nwb [2024-01-17 22:19:07,428][WARNING]: Skipped checksum for file with hash: b4b31e50-dfa2-0d02-514a-525782a81255, and path: /Users/edeno/Documents/GitHub/spyglass/DATA/analysis/mediumnwb20230802/mediumnwb20230802_T4XBCIW44T.nwb [2024-01-17 22:19:07,430][WARNING]: Skipped checksum for file with hash: c18a9ac4-06bc-4249-2bad-439d4f618421, and path: /Users/edeno/Documents/GitHub/spyglass/DATA/analysis/mediumnwb20230802/mediumnwb20230802_UD55CR8LZK.nwb
Let's look at the features shape. This is a list corresponding to tetrodes, with each element being a numpy array of shape (n_spikes, n_features). The features in this case are the amplitude of each tetrode wire at the negative peak of the waveform.
for features in spike_waveform_features:
print(features.shape)
(49808, 4) (21675, 4) (21024, 4) (51330, 4) (43804, 4) (6348, 4) (12188, 4) (2654, 4) (99400, 4) (8952, 4) (39886, 4) (18, 4) (44284, 4) (8283, 4) (36687, 4) (803, 4) (76353, 4) (11367, 4) (41622, 4) (106549, 4) (57394, 4) (30772, 4) (4198, 4)
We can plot the amplitudes to see if there is anything that looks neural and to look for outliers:
import matplotlib.pyplot as plt
tetrode_ind = 1
plt.scatter(
spike_waveform_features[tetrode_ind][:, 0],
spike_waveform_features[tetrode_ind][:, 1],
s=1,
)
<matplotlib.collections.PathCollection at 0x1c61bf940>